Advanced Math

 6-3(Day 2)

Vectors in a Plane

General unit vector- endpoint on unit circle

Trig form of a vector -

$$
\vec{v}=\|\vec{v}\|(\vec{i} \cos \theta+\vec{j} \sin \theta)
$$

Write the trig form of \mathbf{v} at the right.

$$
\|\vec{v}\|=\sqrt{2^{2}+1^{2}}=\sqrt{5} \quad \tan \theta=\frac{1}{2} \Rightarrow \theta=\tan ^{-1}\left(\frac{1}{2}\right)=26.565^{\circ}
$$

Find a unit vector in the direction of the given vector.

(pg. 541)

$$
\vec{v}=\sqrt{5}\left(\vec{i} \cos 26.565^{\circ}+\vec{j} \sin 26.565^{\circ}\right)
$$

*) $\boldsymbol{w}=\langle 3,4\rangle=5\left(\vec{i} \cos 53.130^{\circ}+\vec{j} \sin 53.130^{\circ}\right)$

Note the unit vector has magnitude 1.

Find the vector \boldsymbol{v} with the given magnitude and the same direction as \boldsymbol{u}.

$$
\text { *) }\|v\|=12 . \quad u=-2 i=5 j=\langle-2,-5\rangle \text { Un ad II } \tan \theta=\frac{-5}{-2} \text { Quad III }
$$

$$
\vec{v}=12\left(\vec{i} \cos 248.199^{\circ}+\vec{j} \sin 248.199^{\circ}\right)
$$

$$
\vec{V}^{12(-2)}\left\langle\frac{-24}{\sqrt{29}}, \frac{0 r}{\left.-\frac{60}{\sqrt{29}}\right\rangle^{12(-5)}}\right.
$$

Find the magnitude and direction angle of \boldsymbol{v}.
*) $\boldsymbol{v}=4(\underbrace{\left(\cos 42^{\circ} \boldsymbol{i}+\sin 42^{\circ} \boldsymbol{j}\right)}$

$$
\begin{aligned}
& \|\vec{v}\|=4 \\
& \theta=42^{\circ} \text { or } \underset{\substack{\text { Optional bearing } \\
\text { notation. }}}{ } \quad
\end{aligned}
$$

Arctan will only
place answers in quadrants I and IV. You have to manually adjust the angles if they need to be in II or III by adding 180°.

Find the resultant force, acting upon an object given:
Force 1: 300 N at $335^{\circ} \mathrm{E} \rightarrow 300\left(\vec{i} \cos 305^{\circ}+\vec{j} \sin 305 \rho^{\circ}=\langle 172.073,-245.746\rangle\right.$
Force 2: 125 N at $\mathrm{S} 75^{\circ} \mathrm{W} \rightarrow 12 \mathrm{~S}\left(\vec{i} \cos 195^{\circ}+\vec{j} \sin 195^{\circ}\right)=\langle-120.741-32352\rangle$
Force 3: 275 N at $\mathrm{N} 15^{\circ} \mathrm{E} \quad 275\left(\vec{i} \cos 75^{\circ}+\vec{j} \sin 75^{\circ}\right)=\langle 71.175,265.630)$

Angles need to be measured in standard notation when using the trig form.

Assignment:
pg. 540
1-24 all,
37-42 all.

